The Generalized Reed-Muller codes in a modular group algebra
نویسندگان
چکیده
First we study some properties of the modular group algebra Fpr [G] where G is the additive group of a Galois ring of characteristic pr and Fpr is the field of p r elements. Secondly a description of the Generalized Reed-Muller codes over Fpr in Fpr [G] is presented.
منابع مشابه
The Generalized Reed-Muller codes and the radical powers of a modular algebra
First, a new proof of Berman and Charpin’s characterization of the Reed-Muller codes over the binary field or over an arbitrary prime field is presented. These codes are considered as the powers of the radical of a modular algebra. Secondly, the same method is used for the study of the Generalized Reed-Muller codes over a non prime field.
متن کاملNew descriptions of the weighted Reed-Muller codes and the homogeneous Reed-Muller codes
We give a description of the weighted Reed-Muller codes over a prime field in a modular algebra. A description of the homogeneous Reed-Muller codes in the same ambient space is presented for the binary case. A decoding procedure using the Landrock-Manz method is developed.
متن کاملAnother Generalization of the Reed-Muller Codes
The punctured binary Reed-Muller code is cyclic and was generalized into the punctured generalized ReedMuller code over GF(q) in the literature. The major objective of this paper is to present another generalization of the punctured binary Reed-Muller code. Another objective is to construct a family of reversible cyclic codes that are related to the newly generalized Reed-Muller codes. Index Te...
متن کاملConstruction of Self-Dual Radical 2-Codes of given Distance
A linear code C is called a group code if C is an ideal in a group algebra K[G] where K is a ring and G is a finite group. Many classical linear error-correcting codes can be realized as ideals of group algebras. Berman [1], in the case of characteristic 2, and Charpin [2], for characteristic p = 2, proved that all generalized Reed–Muller codes coincide with powers of the radical of the group a...
متن کاملThe automorphism group of Generalized Reed-Muller codes
Berger, T. and P. Charpin, The automorphism group of Generalized Reed-Muller codes, Discrete Mathematics 117 (1993) l-17. We prove that the automorphism group of Generalized Reed-Muller codes is the general linear nonhomogeneous group. The Generalized Reed-Muller codes are introduced by Kasami, Lin and Peterson. An extensive study was made by Delsarte, Goethals and Mac-Williams; our result foll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1609.09531 شماره
صفحات -
تاریخ انتشار 2016